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The system of Hermann–Mauguin symbols for space and subperiodic Euclidean

groups in two and three dimensions is extended to groups with continuous and

semicontinuous translation subgroups (lattices). An interpretation of these

symbols is proposed in which each symbol defines a quite specific Euclidean

group with reference to a crystallographic basis, including the location of the

group in space. Symbols of subperiodic (layer and rod) groups are strongly

correlated with symbols of decomposable space groups on the basis of the

factorization theorem. Introduction of groups with continuous and semicon-

tinuous lattices is connected with a proposal for several new terms that describe

the properties of these groups and with a proposal to amend the meaning of

space groups and of crystallographic groups. Charts of plane, layer and space

groups describe variants of these groups with the same reducible point group but

various types of lattices. Examples of such charts are given for plane, layer and

space groups to illustrate the unification principle for groups with decomposable

lattices.

1. A brief history and the current status of symbols

Most mathematicians who specialize in some branch of group

theory would be surprised to hear that groups are of specific

importance in physics. Actually, group theory is even

connected with such basic laws of nature as the conservation

of momentum and of angular momentum. In classical physics,

we believe that our space is of Euclidean character, so that it is

homogeneous and isotropic. In group-theoretical language, it

means that the space is invariant under translations and under

rotations about any chosen point. Conservation of momentum

is a consequence of this translational symmetry, conservation

of angular momentum follows from the rotational symmetry.

In the theory of special relativity, the law of the conservation

of the energy-momentum tensor also follows from Minkow-

ski’s metric of space–time.

Groups are also a mathematical tool for the consideration

of symmetry and its consequences in material physics. Point

groups were originally introduced in connection with classifi-

cation of the external shape of monocrystals into so-called

Hessel–Gadolin classes. Later, Fedorov and Schoenflies

derived independently the 230 types of possible space

symmetries of crystals. Neither of these two authors com-

pletely succeeded on their first attempts, and finally they

compared their results which were also confirmed by Barlow.

It is remarkable that the basic assumption of this derivation,

namely the periodic structure of crystals, was convincingly

experimentally confirmed only after the discovery of X-rays

and of diffraction methods which came about two decades

later.

The description and symbols for space groups are presented

in Vol. A, Space Group Symmetry of the International Tables

for Crystallography (1983) (abbreviated here as ITA). In this

volume, one can find two kinds of symbols for the point and

space groups: the Schoenflies and the Hermann–Mauguin

symbols. Since the first edition of this book in 1930, crystal-

lography has developed into a specific branch of physical

science, the importance of which can be hardly overestimated.

Technological applications of crystals are amongst the pillars

of modern civilization, especially in communication tech-

nology and it is not an exaggeration if we claim that crystals

helped to change our world positively in many aspects. The

number of known crystal structures today is hundreds of

thousands and it is therefore important that there exist

generally approved and used standards for their description as

given in ITA. The tables themselves, as well as the Hermann–

Mauguin symbols, have consequently been developed to their

present form. The last amendment concerned the introduction

of the letter e into those Hermann–Mauguin symbols where a

couple of the symbols a, b, c has an equivalent meaning and

with the introduction of dash–double-dotted lines in the

corresponding diagrams.



Consideration of magnetic properties and of crystals with

atoms (or ions) that carry magnetic momentum requires the

introduction of magnetic point and space groups. The

magnetic point groups are sometimes called Heesch groups

because they were derived by Heesch in 1930 as the three-

dimensional groups of four-dimensional space. In the older

Russian literature, we can also find another system of symbols

for point and space groups developed by Shubnikov. These

symbols were also introduced for magnetic groups and the

magnetic space groups are also called Shubnikov groups,

mostly again in the Russian literature. At the moment, we can

say that these symbols have generally been abandoned. We

shall therefore adopt the position that there is a common

consensus to use only the Schoenflies and Hermann–Mauguin

symbols for the description of point and space groups,

including the magnetic groups.

These groups, however, do not exhaust all groups of interest

in materials physics or even all groups which deserve to

be called ‘crystallographic groups’. There exist chemical

compounds with symmetries that are not crystallographic and

in the solid state so-called quasicrystals were found to form

and their description requires non-crystallographic groups.

Since in general molecules have no periodicity, their symme-

tries are usually called point groups. Moreover, the application

of group theory is not limited to the description of structures

and the most powerful uses of groups lie in applications of the

theory of group representations.

The International Tables for Crystallography were prepared

by crystallographers and consequently reflect the exigencies of

the practical determination and description of crystal struc-

tures. Space groups therefore describe symmetries of possible

structures in the model of so-called ideal crystals, which means

monocrystals that fill the whole space, so that surface effects

can be neglected. However, crystalline materials frequently

consist of monocrystals of various orientations, there exists a

phenomenon called twinning in which two monocrystals of

different orientations join along a certain plane and, finally, in

structural phase transitions there appear regions of low

symmetry, called domains, whose structures are, in a given

transition, identical up to orientation and shift in space.

Consideration of boundaries now constitutes a subject which

is known under the name of bicrystallography (Pond &

Vlachavas, 1983). Symmetries of domain walls and twin

boundaries are described by groups of two-dimensional

periodicity which are known under the name layer groups.

Symmetries of linear edifices in a crystal are accordingly

described by groups with one-dimensional periodicity known

now under the name rod groups.

Both types of these groups have been historically derived

and rederived under different names since the first decades of

the last century and various symbols were invented for their

classification. Eventually, in a manner analogous to the stan-

dards for space groups, standards for these groups were

introduced in International Tables for Crystallography (2002),

Vol. E, Subperiodic Groups (abbreviated here as ITE).

Comparative tables, given in this volume, of symbols used at

various times by different authors show that at least 9 types of

symbols for frieze groups, 6 for rod groups and 20 for layer

groups have been used. Hermann–Mauguin types of symbols

for layer groups were introduced and tables analogous to

those for the space groups were derived by Wood (1964). Our

notation is, however, closer to that introduced by Bohm &

Dornberger-Schiff (1966, 1967), used also later in tables by

Grell et al. (1989). The reason for this choice lies in the

background of the unified system of Hermann–Mauguin

symbols which is based on the fact that subperiodic groups are

isomorphic to factor groups of reducible space groups

(Kopský, 1986, 1988b, 1989a,b, 1993a; Fuksa & Kopský, 1993;

see also x5).

Both volumes A and E of the International Tables for

Crystallography are restricted to the description of only those

groups of isometries that are crystallographic and whose

translation subgroups are discrete. On the other hand,

problems of material physics involve groups with continuous

or semicontinuous translation subgroups (lattices in crystal-

lographic terminology) as well as groups of non-crystal-

lographic character. Although ideal crystals always have

discrete lattices, it is sometimes suitable to neglect their

microscopic structure and consider them as continuous media.

Such an approximation is used, for example, in the consid-

eration of ‘ferroic’ phase transitions. In this case, it is appro-

priate to consider the symmetry as a group whose lattice is

continuous. In the consideration of domain walls or twin

boundaries in the same approximation, we need to consider

layer groups whose lattices are also continuous. In this

connection, it is necessary to amend the usual meaning of

terms crystallographic and space groups (see x3). We shall

consider here all cases in which the point and translation

subgroups are discrete, semicontinuous or continuous. The site

point groups and point groups will be considered in more

detail in the accompanying papers on tensor calculus (Kopský,

2006a,b).

2. The elementary theory of Euclidean groups

The fact that the universe in the nonrelativistic approximation

is a three-dimensional point space Eð3Þ of Euclidean type is

established by experiment. We shall consider elementary

properties of such spaces for arbitrary dimensions. An

Euclidean space EðnÞ of dimension n is a point space on which

there is defined an Euclidean metric and hence also the

orthogonality of directions. As a result, this space is associated

with a vector space VðnÞ of dimension n on which there is

defined a scalar product ða; bÞ of any of its two vectors a, b and

hence the norm of a vector jxj ¼ ðx; xÞ1=2. In the space VðnÞ,

we can choose an orthonormal basis feig
n
i¼1 so that ðei; ejÞ ¼ �ij,

where �ij, known as the Kronecker delta, equals 1 only if i ¼ j

and zero otherwise. Vectors satisfying these conditions are

linearly independent and their number n defines the dimen-

sion of the space VðnÞ, so that each vector x of VðnÞ may be

expressed as
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x ¼
Pn
i¼1

xiei; and the scalar product is ða; bÞ ¼
Pn
i¼1

aibi;

where a ¼
Pn

i¼1 aiei, b ¼
Pn

i¼1 biei. The norm of a vector is

then expressed by jxj ¼ ð
Pn

i¼1 x2
i Þ

1=2.

The space VðnÞ is usually called the difference space of EðnÞ.

Each of its vectors x corresponds to infinitely many pairs of

points X1, X2 2 EðnÞ which is written formally as x ¼ X2 � X1

and the norm of vector jxj ¼ ½ð
Pn

i¼1ðx2i � x1iÞ
2�1=2 is equal to

the distance between any pair of these points.

A mapping g : VðnÞ�!VðnÞ of the space VðnÞ onto itself (a

bijection) or onto one of its proper subspaces (an injection) is

called linear if

gðaxþ byÞ ¼ agxþ bgy:

Mappings on a proper subspace are also called projections.

Bijections satisfy the condition that to each bijection g there

exists its inverse g�1, so that, if g maps an arbitrary vector

x 2 VðnÞ onto a vector y ¼ gx, then g�1 maps the vector y onto

x ¼ g�1y ¼ g�1gx. Hence the mapping g�1g and gg�1 is also

the identity mapping which maps each vector x 2 VðnÞ onto

itself. This mapping will be denoted by e. All bijections form a

group GVðnÞ, called the general linear group on VðnÞ.

A linear mapping g : VðnÞ�!VðnÞ is called orthogonal if it

leaves scalar products invariant so that ðga; gbÞ ¼ ða; bÞ for

each pair of vectors a, b. All orthogonal transformations

constitute a group OðnÞ, called the orthogonal group of

dimension n which is a subgroup of GVðnÞ. Mapping can be

interpreted either as a transformation of bases or as a linear or

orthogonal operator on VðnÞ. Orthogonal mappings send the

orthonormal bases back into orthonormal bases because they

do not change the scalar products. Linear mappings can be

expressed by n� n matrices according to

gei ¼
Pn
j¼1

DjiðgÞej:

Thus the choice of a basis feig
n
i¼1 defines an isomorphism of the

group GVðnÞ with the group GLðn; RÞ of real invertible

matrices called the general linear group (of n-dimensional

matrices) and of the group OðnÞ with the group OðnÞ of

matrices which are orthogonal if and only if the vectors of the

basis feig
n
i¼1 are mutually orthogonal.

Euclidean spaces: Any point X of an Euclidean space EðnÞ

can be expressed as a certain chosen point P, called the origin

plus a vector x 2 VðnÞ. The origin together with the basis of

VðnÞ constitute a coordinate system ðP; feig
n
i¼1Þ. Any point

X 2 EðnÞ is then formally expressed as X ¼ Pþ x. The set of

values ðx1; x2; . . . ; xnÞ is interpreted either as the set of

components of a vector x in the basis feig
n
i¼1 or as a set of

coordinates of a point X in the coordinate system ðP; feig
n
i¼1Þ.

2.1. Isometries and Seitz symbols

A mapping of an Euclidean space EðnÞ onto itself is called

an isometry (rigid motion or Euclidean transformation) if it

leaves the distances between points invariant. We distinguish

two kinds of basic transformations.

1. Rotation of the space EðnÞ about a chosen point P. To

each rotation there corresponds an element g 2 OðnÞ such

that the action of the rotation on the point Pþ x is expressed

by Pþ gx. All rotations about an arbitrary point P then

constitute a group OPðnÞ of all isometries which leave the

point P invariant. Each such group is isomorphic with the

orthogonal group OðnÞ.

We distinguish proper rotations that have the property that

their matrices DðgÞ have determinant jDðgÞj ¼ 1 from

improper rotations whose matrices have determinant

jDðgÞj ¼ �1. Proper rotations constitute a halving subgroup

of OðnÞ, denoted by SOðnÞ and called the special orthogonal

group. Improper rotations constitute a coset mSOðnÞ, where

m is any element with jDðmÞj ¼ �1. It is, however, suitable to

consider as m that element ofOðnÞ to which there corresponds

a hyperplane in EðnÞ. The matrix of such an element in a

suitable basis is diagonal with all entries on the diagonal being

1 except one which is �1.

Remark. A space inversion, denoted by i, changes the sign of

any vector and hence its matrix DðiÞ ¼ �I, the negative of unit

matrix I in any coordinate system. If n is even, then i 2 SOðnÞ

is a proper rotation; if n is odd, then i 2 mSOðnÞ is an

improper rotation.

2. Translation of the whole space by a certain vector

t 2 VðnÞ. This isometry sends any point Q 2 EðnÞ to the point

Qþ t. The following lemma, formulated here without proof, is

the starting point of the theory of Euclidean groups.

Lemma 1. Any isometry can be expressed as a result of a

certain rotation of the space about any chosen point P

followed by a certain translation.

Seitz symbols: In view of this lemma, we introduce the

symbols of isometries which bear the name of Seitz. Such a

symbol, for an isometry that consists of a rotation g about a

point P followed by translation t is denoted by fgjtgP and it

acts on the point X ¼ Pþ x as follows:

fgjtgPðPþ xÞ ¼ Pþ gxþ t:

All isometries constitute the full Euclidean group in n

dimensions, which we denote by EðnÞ. The multiplication law

on this group has the form

fgjtggPfhjthgP ¼ fghjtg þ gthgP;

the unit of the group EðnÞ is

fej0gP

and the reciprocal to an element fgjtgP is

fgjtgg
�1
P ¼ fg

�1
j � g�1tggP:

If we change the reference point P (the origin) to the point

Q ¼ Pþ s, then the point X is expressed as X ¼ Qþ x� s

and
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fgjtgQX ¼ fgjtgQðQþ x� sÞ ¼ Qþ gx� gsþ t

¼ Pþ gxþ s� gsþ t ¼ fgjtþ ’ðg; sÞgPX;

where

’ðg; sÞ ¼ s� gs

is a so-called shift function. Since the relation holds for any X,

we obtain that

fgjtgPþs ¼ fgjtþ ’ðg; sÞgP

and, conversely,

fgjtgP ¼ fgjt� ’ðg; sÞgPþs:

The first of these relations shows how an isometry that oper-

ates in a certain manner with reference to point Q ¼ Pþ s is

expressed by a Seitz symbol with reference to point P. The

second relation shows how the Seitz symbol for a certain

isometry, expressed with reference to a point P, changes if we

express it with reference to a point Q ¼ Pþ s:
The subscript P, referring to the origin, is usually dropped in

most textbooks on the assumption that the origin is fixed. In

our consideration, the distinction of Seitz symbols with

reference to different origins is essential.

Geometric interpretation and location properties of isom-

etries: We consider now an element g 2 OðnÞ. The space VðnÞ

splits under the action of g into two mutually orthogonal

subspaces: VðnÞ ¼ Vf ðgÞ � VlðgÞ, where Vf ðgÞ is defined as

that subspace of VðnÞ which contains all vectors s for which

’ðg; sÞ ¼ 0. In other words, this space contains all translations

which are invariant under the action of g, so that gs ¼ s. The

space VlðgÞ is chosen as an orthogonal complement of Vf ðgÞ.

To the element g 2 OðnÞ, there correspond infinitely many

elements fgjtgP 2 EðnÞ. We split the translation t into its

components tf 2 Vf ðgÞ and tl 2 VlðgÞ, so that t ¼ tf þ tl and

express the element fgjtgP with reference to another point

Pþ s, so that

fgjtgP ¼ fgjt� ’ðg; sÞgPþs ¼ fgjtf þ tl � ’ðg; sÞgPþs:

If we also split the vector s ¼ sf þ sl into its components

sf 2 Vf ðgÞ and sl 2 VlðgÞ, we find that ’ðg; sÞ ¼ ’ðg; slÞ

because gsf ¼ sf , so that ’ðg; sf Þ ¼ 0 and

fgjtgP ¼ fgjtf þ tl � ’ðg; slÞgPþs:

The equation tl � ’ðg; slÞ ¼ 0 always has a solution sl for

which

fgjtgP ¼ fgjtf gPþsl
:

From this result, we reach two conclusions:

(i) the shift of origin by any sf 2 Vf ðgÞ does not change the

element fgjtgP, and

(ii) we can find an origin Pþ sl for which fgjtgP ¼ fgjtf gPþsl
.

From this follows a geometrical description of the action of

an element fgjtgP on EðnÞ. The action of this element on the

subspace ðPþ sl; Vf ðgÞÞ is reduced to a translation tf . In the

three-dimensional case, this subspace can be a point Pþ sl, a

line or a plane passing through this point, or the whole space.

In the first case, VlðgÞ ¼ Vð3Þ, the only allowed translation is

tf ¼ 0 and the element fgjtgP ¼ fgj0gPþsl
leaves the point

Pþ sl invariant. Such elements are either the inversion or

rotoinversion at the point Pþ sl. For Vf ðgÞ one- or two-

dimensional, we obtain either screw axes or glide planes where

tf are the screw or glide translations (if this vector is trivial, we

obtain an ordinary axis or plane). In higher dimensions, we

obtain analogously higher-dimensional subspaces. Finally, the

case when Vf ðnÞ ¼ VðnÞ corresponds to g ¼ e in any dimen-

sion and the element is simply a translation fejtg. In this

particular case, it is not at all necessary to specify the origin P

in the Seitz symbol.

Finally, let us comment on the choice of subscripts f and l

which stand for the verbal description of an element fgjtgP as

‘floating’ in ðPþ sl; Vf ðgÞÞ and ‘localized’ in any of the point

spaces ðPþ sf ; VlðgÞÞ.

The vector space VðnÞ appears in these considerations in

two roles.

(i) As the space of all translations fejtg. In this role, the

space VðnÞ is the subgroup of the full Euclidean group EðnÞ.

(ii) As the space of difference vectors x on which the

elements of OðnÞ act.

Lemma 2. As a subgroup of EðnÞ, the space VðnÞ is its normal

subgroup. Indeed, any conjugate element to a translation

fejtg 2 VðnÞ can be expressed as

fgjtggPfejtgfg
�1
j �g�1tggP ¼ fejgtg 2 VðnÞ:

According to the theory of normal subgroups, there exists a

homomorphism that maps the group EðnÞ onto the factor

group EðnÞ=VðnÞ whose unit element VðnÞ contains all trans-

lations fejtg and cosets contain all elements fgjtgP with the

same g (the change of P does not change g). Choosing coset

representatives as fgjtgP, we obtain those homomorphisms

�P : EðnÞ�!OPðnÞ of EðnÞ that map EðnÞ onto groups of

rotations about any chosen point P. We introduce the homo-

morphism � : EðnÞ�!OðnÞ, which maps each element

fgjtgP 2 EðnÞ onto its orthogonal part g 2 OðnÞ, so that

�ðfgjtgPÞ ¼ g. It is Ker �ðEðnÞÞ ¼ VðnÞ and Im �ðEðnÞÞ ¼ OðnÞ.

Remark. An affine transformation of EðnÞ is, by definition, any

transformation that leaves parallel subspaces parallel. The

group AðnÞ of all affine transformations of EðnÞ contains the

group of Euclidean transformations as its subgroup. Generally,

an affine transformation can be expressed again by Seitz

symbol fgjtgP, where g 2 GVðnÞ.

2.2. The fundamental theorem on Euclidean groups

The group EðnÞ is called the full Euclidean group of

dimension n and its subgroups are called Euclidean groups (of

dimension n). We shall formulate now without proof a

theorem for the Euclidean groups though an analogous

theorem holds also for the affine groups.

research papers
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Theorem 1. (Fundamental theorem on Euclidean groups).

Every Euclidean group can be expressed by a symbol

G ¼ fG;TG;P; uGðgÞg ¼ fG;TG;Pþ s; uGðgÞ � ’ðg; sÞg;

which has the meaning of the set of all isometries of the form

fgjtþ uGðgÞgP ¼ fgjtþ uGðgÞ � ’ðg; sÞgPþs, where the symbols

are defined as follows.

(i) g are elements of a group G � OðnÞ acting on the vector

space VðnÞ – this is the so-called ‘point group’ of the Euclidean

group G and it is �ðGÞ ¼ G ¼ Im �ðGÞ.
(ii) TG is a G-invariant subgroup of VðnÞ, which contains all

translations t present in the elements of G. It is therefore

GTG ¼ TG, and TG /
�
G (the symbol /

�
means normal

subgroup). This is the translation subgroup or, in crystal-

lographic language, the vector lattice of the group G and it is

evidently TG ¼ G \ VðnÞ ¼ Ker �ðGÞ and G � G=TG.

(iii) uG : g�!uGðgÞ 2 VðnÞ is a function that satisfies the so-

called Frobenius congruences:

wGðg; hÞ ¼ uGðgÞ þ guGðhÞ � uGðghÞ ¼ 0 ðmod TGÞ

or, equivalently,

wGðg; hÞ 2 TG for every pair of g; h 2 G:

In particular, for the full Euclidean group we have

EðnÞ ¼ fOðnÞ;VðnÞ;P; uGðgÞ � 0g:

The functions uGðgÞ are known as the systems of non-

primitive translations, the functions wGðg; hÞ as the factor

systems. The systems of non-primitive translations for the

same group with reference to different origins P differ by a

shift function ’ðg; sÞ. Quite generally, any function

uGðgÞ : G�!VðnÞ, which satisfies the Frobenius congruences,

defines a group G. If uGðgÞ has this property, then the function

uGðgÞ þ tGðgÞ, where tGðgÞ : G�!TG also has it and defines

the same group G. To achieve uniqueness of the relationship

between groups and systems of non-primitive translations, we

therefore restrict uGðgÞ to the fundamental region ½VðnÞ=TG�

of TG. This region contains representatives of coset resolution

of the space VðnÞ, considered as an Abelian group, with

respect to its subgroup TG. In the Euclidean space EðnÞ, there

corresponds to it the fundamental region of the translation

group TG which can be chosen in infinitely many ways. It is

usual to choose it either as a Wigner–Seitz cell or as the unit

cell. We shall always use the latter choice.

The location properties of Euclidean groups: In Theorem 1,

we expressed the same group G with reference to different

origins of the coordinate system. On the other hand, the group

GðsÞ defined by

GðsÞ ¼ fG;TG;Pþ s; uGðgÞg ¼ fG;TG;P; uGðgÞ þ ’ðg; sÞg

has evidently the meaning of a group of isometries which acts

on EðnÞ in the same manner with reference to the origin Pþ s

as the group G acts with reference to the origin P.

Proposal: In connection with this relation, we suggest the

location of Euclidean groups be described as follows. (i)

Assign to each Hermann–Mauguin symbol a certain standard

location of the group in space. In crystallographic language,

this corresponds to the choice of origin. Thus, if G is a certain

Hermann–Mauguin symbol, there exists one and only one

diagram which describes the group. (ii) If the location of the

group (choice of origin) differs from the standard, write the

shift in parentheses after the standard Hermann–Mauguin

symbol, i.e. write it exactly as GðsÞ.

Let us observe that we used this principle in defining the

standards of subperiodic groups in ITE and to interpret the

Hermann–Mauguin symbols from ITA. This was necessitated

by the Scanning Tables in which the location of space groups

as well as their sectional layer groups are of prime importance.

Translation normalizers: Inspecting diagrams of space or of

subperiodic groups, we can see that certain translations do not

change them. These translations s are those which satisfy the

relation ’ðg; sÞ ¼ s� gs 2 TG. These translations constitute a

group called the translation normalizer of the group G,

denoted by TNðGÞ, and they are common to all groups with the

same pair ðG;TGÞ. Such a set of groups constitutes an oriented

arithmetic class with fixed parameters (cf. next section).

Translation normalizers were considered by Kopský (1993b,c)

and they represent the translation subgroups of the Euclidean

normalizers given in ITA.

Systems of non-primitive translations, factor systems and

shift functions appear in two very exacting papers by Ascher

& Janner (1965, 1968/69) on space groups in arbitrary

dimensions in which the theory of space groups in arbitrary

dimensions is treated on the basis of the theory of cohomology

groups. Our approach is a plain extension of this theory to

subperiodic and other Euclidean groups. The author wishes to

acknowledge a series of lectures given by the recognized

Czech specialist on Abelian groups, Professor L. Procházka

from Charles University in Prague, who helped a small group

of our theorists to decipher these papers. It might be worth

mentioning that he was happy to find that such an exacting

theory has practical application in crystallography.

2.3. The fundamental theorem on arithmetic classes

We shall now consider Euclidean groups with the same pair

ðG;TGÞ of the point group G and of the translation subgroup

(lattice) TG. The set of all such distinct groups constitutes an

oriented arithmetic class with fixed parameters, i.e. groups

with the same orientation of the point group G and with the

same parameters which define the translation subgroup TG.

All groups of the arithmetic class are obtained by applying

admissible affine transformations; the whole set of groups of

the arithmetic class will contain Euclidean groups of oriented

arithmetic classes with fixed parameters ð�G��1; �TGÞ (the

orientation refers to both G and TG while TG still has free

parameters). Whatever we say about groups with the same

pair ðG;TGÞ can then be applied to groups with pairs

ð�G��1; �TGÞ.

Furthermore, if G ¼ fG;TG;P; uGðgÞg is a certain Euclidean

group, then the group

GðsÞ ¼ fG;TG;Pþ s; uGðgÞg ¼ fG;TG;P; uGðgÞ þ ’ðg; sÞg
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is related to the origin Pþ s in exactly the same way as the

group G is related to the origin P. It is G ¼ GðsÞ if ’ðg; sÞ 2 TG,

which means that s is an element of the translation normalizer

TNðGÞ ¼ TNðG;TGÞ. The last expression refers to the fact that

all groups of the same oriented arithmetic class ðG;TGÞ with

fixed parameters have the same translation normalizer which

reflects their location properties (Kopský, 1993bc). Each

group GðsÞ is therefore represented if s runs through the

fundamental region ½VðnÞ=TNðG;TG�.

Theorem 2. (Fundamental theorem on arithmetic classes).

Every group of the oriented arithmetic class ðG;TGÞ with fixed

parameters can be expressed as

G
ð�Þ
ðsÞ ¼ fG;TG;Pþ s; u

ð�Þ
G ðgÞg ¼ fG;TG;P; u

ð�Þ
G ðgÞ þ ’ðg; sÞg

and the set of the systems of non-primitive translations u
ð�Þ
G can

be chosen so that it forms an additive group.

Baer multiplication: It is therefore possible to introduce a

formal multiplication of the symbols of Euclidean groups of

the same arithmetic class:

G
ð�Þ
ðs1Þ 	 G

ð�Þ
ðs2Þ ¼ G

ð�Þ
ðs1 þ s2Þ;

which corresponds to

u
ð�Þ
G ðgÞ þ ’ðg; s1Þ þ u

ð�Þ
G ðgÞ þ ’ðg; s2Þ ¼ u

ð�Þ
G ðgÞ þ ’ðg; s1 þ s2Þ:

We name this law after Baer (1934, 1949), the great con-

tributor to the theory of group extensions from which all

cohomology considerations stem. It is a check that all systems

of non-primitive translations u
ð�Þ
G ðgÞ þ ’ðg; sÞ result in the

same factor system w
ð�Þ
G ðg; hÞ.

Remark. The trivial system of non-primitive translations

u
ð�Þ
G ðgÞ � 0 corresponds to the symmorphic group of the class

ðG;TGÞ with origin at the point of the symmetry G.

Application to space groups: The concept of arithmetic

classes has been introduced for space groups and here it is

extended to all Euclidean groups. Let us see what conclusions

we can make so far for the classical space groups. According to

definition, the point group G defines the oriented geometric

class to which the space group G belongs. Conjugate groups

hGh�1 define other oriented geometric classes all of which

constitute the geometric class of space groups. The pair

ðG;TGÞ defines an oriented arithmetic class with fixed par-

ameters. In terms of space-group diagrams that visualize the

group, the parameters of TG, which are the vectors ða; b; cÞ of

the crystallographic basis, define the frame in which we draw

the diagram. Each system of non-primitive translations u
ð�Þ
G ðgÞ

defines a certain space group Gð�Þ and hence a certain diagram.

The group Gð�ÞðsÞ has the same diagram, shifted by s in the

reference frame. If s is in the translation normalizer, the

diagram coincides with the original. Taking all systems

of non-primitive translations u
ð�Þ
G ðgÞ and all shifts

s 2 ½VðnÞ=TNðG;TG�, we exhaust all groups of the oriented

arithmetic class ðG;TGÞ and hence also all diagrams that fit the

frame. Groups with different labels �, � are not necessarily of

a different space-group type.

Addendum to the proposal: The label � of the system of

non-primitive translations defines the diagram of the space

group up to its location (choice of origin) uniquely. The

majority of diagrams of space groups in ITA (all diagrams in

ITE) are associated uniquely with Hermann–Mauguin

symbols. These symbols are missing from the diagrams of the

monoclinic space groups but they can easily be deduced. From

this viewpoint, the symbol Pb�33 is also missing from the

diagram of the group type T6
h.

There are therefore three ways to characterize a space

group uniquely with reference to a crystallographic basis:

(i) by the label � of the system of non-primitive translations

and by the shift s;

(ii) by the Hermann–Mauguin symbol with shift s behind it,

provided that a correspondence of zero shift with a certain

system of non-primitive translations be established;

(iii) by its diagram.

3. Reducibility and decomposability of Euclidean
groups

In most textbooks on applications of group theory to atomic

or solid-state physics, the concepts of reducibility and

decomposability are not distinguished. We shall briefly explain

the difference and why we need to distinguish these two cases.

Definition 3.1. Let a group G act on a linear space VðnÞ. We say

that this action (or that the group G) is reducible if there exists

a proper subspace VðkÞ of VðnÞ which is invariant under the

action of G, so that gx 2 VðkÞ for all g 2 G if x 2 VðkÞ. We

say that the action of G on VðnÞ is decomposable if the

space VðnÞ splits into a direct sum of proper subspaces

VðnÞ ¼ Vðk1Þ � Vðk2Þ both of which are invariant under the

action of G.

In terms of matrix representations of these groups, this

means that all matrices DðgÞ for g 2 G can be, by a suitable

choice of basis, brought to either of the forms

DðgÞ ¼
D1ðgÞ 0

D12ðgÞ D2ðgÞ

� �
or

D1ðgÞ 0

0 D2ðgÞ

� �
;

where the first corresponds to reducibility, the second to

decomposability.

For the groups we consider in material physics, reducibility

implies decomposability when action on linear spaces is

considered so that there is no need to distinguish them.

However, in our consideration of arithmetic classes ðG;TGÞ,

the group G acts on TG which need not be a linear space. In

the case of space groups in their usual meaning, which will be

later amended, their translation subgroups (lattices) TG are

discrete subgroups of VðnÞ. In proper algebraic language, such
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structures are called modules. We shall briefly describe the

difference between linear spaces and modules.

A linear (vector) space contains linear combinations

a1x1 þ a2x2 þ . . .þ amxn of any set of its vectors x1, x2, . . . , xn

with coefficients ai from a number field. The term field means

that the ratio a=b of two numbers is defined unless b ¼ 0. This

enables us to define linear independence and the number of

linearly independent vectors xi whose linear combinations

represent all vectors of the space is called the dimension of this

space and a set of these vectors is called a basis. It is a

substantial property of linear spaces that each set of linearly

independent vectors whose number equals the dimension is a

basis. In our applications, we need only the fields Q of

rationals, R of real numbers and C of complex numbers.

A module also contains a linear combination

n1x1 þ n2x2 þ . . .þ nmxn of any set of its vectors x1, x2, . . . , xn

with coefficients ni from a ring such as the set Z of integers.

The set of vectors whose linear combinations with coefficients

from the ring exhaust all vectors of the module is again called

its basis. Their number is called the rank of the module.

However, in a ring the ratio of two numbers does not exist for

an arbitrary pair (the ratio n=m of two integers n;m 2 Z

belongs to the ring Z if and only if m is a divisor of n). As a

result, there exist sets of linearly independent vectors in a

module that do not form a basis although their number equals

the rank.

We shall now briefly describe what this means in three-

dimensional space. Let us consider the conventional crystal-

lographic basis ða; b; cÞ of a certain space group. We denote

by Tða; b; cÞ the set of all vectors of the form

t ¼ n1aþ n2bþ n3c, where n1, n2, n3 are integers. The set of

vectors ð2a; b; cÞ evidently is not a basis of Tða; b; cÞ. Actually,

if we consider a centred lattice, then the conventional basis is

not even a basis of the lattice in its algebraic meaning. The

space Vð3Þ contains all vectors of the form x ¼ xaþ ybþ zc,

where x, y, z are real numbers. With the exception of cubic

groups, the action of point groups of all space groups on

Vða; b; cÞ is reducible and also decomposable because the

space splits into a direct sum Vða; bÞ � VðcÞ in cases of a

standard orientation of a point group G for all groups with the

exception of the cubic system. If we now consider those

vectors of the lattice TG which are elements of subspaces

Vða; bÞ, VðcÞ, we obtain a two-dimensional lattice

TG1 ¼ TG \ Vða; bÞ ¼ Tða; bÞ and a one-dimensional lattice

TG2 ¼ TG \ VðcÞ ¼ TðcÞ. If the lattice TG is primitive, it is

identical with the direct sum TG1 � TG2 ¼ Tða; bÞ � TðcÞ. This

is also true if the centring vector lies in the space Vða; bÞ.

However, if there is a centring vector which has components in

both subspaces Vða; bÞ, VðcÞ, then the lattice TG can be

expressed as Tða; bÞ � TðcÞ½0þ d�.

Definition 3.2. Let ðG;TGÞ be an oriented arithmetic class with

fixed parameters and let the action of G on VðnÞ be reducible

(hence also decomposable), so that VðnÞ ¼ Vðk1Þ � Vðk2Þ.

Further, let �1 : VðnÞ�!Vðk1Þ and �2 : VðnÞ�!Vðk2Þ be the

projections of the space VðnÞ onto its G-invariant subspaces

Vðk1Þ and Vðk2Þ, so that �1ðxÞ ¼ x1 and �2ðxÞ ¼ x2 are

components of a vector x in the subspaces Vðk1Þ and Vðk2Þ

and hence x ¼ x1 þ x2. We define translation groups

T
ðoÞ
G1 ¼ �1ðTGÞ, T

ðoÞ
G2 ¼ �2ðTGÞ and TG1 ¼ TG \ Vðk1Þ,

TG2 ¼ TG \ Vðk2Þ. The group TG is then generally expressed

as

TG ¼ TG1 � TG2½0 [ d2 [ . . . [ dp�;

where

T
ðoÞ
G1 ¼ TG1½0 [ d12 [ . . . [ d1p�

and

T
ðoÞ
G2 ¼ TG1½0 [ d22 [ . . . [ d2p�:

Vectors di, i ¼ 2; . . . ; p, here are the centring vectors and

d1i ¼ �1ðdiÞ, d2i ¼ �2ðdiÞ are their projections on subspaces

Vðk1Þ, Vðk2Þ, respectively.

We say that the lattice TG is decomposable under the action

of G with respect to decomposition VðnÞ ¼ Vðk1Þ � Vðk2Þ if

TG ¼ TG1 � TG2. In this case, we obtain that TG1 ¼ T
ðoÞ
G1 and

TG2 ¼ T
ðoÞ
G2.

We say that the lattice TG is reducible/indecomposable

under the action of G with respect to decomposition

VðnÞ ¼ Vðk1Þ � Vðk2Þ if TG1 � TG2 
 TG 
 T
ðoÞ
G1 � T

ðoÞ
G2.

Below we consider decompositions and reductions of

translation subgroups which are reducible under the action of

point groups in two- and three-dimensional cases. For crys-

tallographic groups and hence for discrete lattices such
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Table 1
Reductions and decompositions of two-dimensional translation groups
according to their Bravais classes.

Oblique system
Any basis vectors a; b
All reductions inclined To

G1 To
G2

p TðaÞ � TðbÞ pa pb

Rectangular system
All reductions orthogonal To

G1 To
G2

p TðaÞ � TðbÞ pa pb

c TðaÞ � TðbÞ½0 [ ðaþ bÞ=2� pa=2 pb=2

Meaning of symbols: p ¼ Tða; bÞ, c ¼ T½ðaþ bÞ=2; ða � bÞ=2�, pa ¼ TðaÞ, pb ¼ TðbÞ;
pa=2 ¼ Tða=2Þ, pb=2 ¼ Tðb=2Þ.
Groups of oblique and rectangular system in two dimensions are reducible and the space
Vða; bÞ splits into a direct sum Vða; bÞ ¼ VðaÞ � VðbÞ, where the subspaces VðaÞ, VðbÞ are
orthogonal in the case of rectangular system, but can be inclined in the case of the oblique
system. This table shows the reduction or decomposition of crystallographic lattices. We
consider also lattices that contain continuous components. There are the following types
of such lattices in two dimensions:
pavb ¼ TGðaÞ � VGðbÞ, or vapb ¼ VGðaÞ � TGðbÞ, and Vða; bÞ.
Lattices of pavb and vapb are invariant only under the action of point groups of oblique
or rectangular systems. The lattice Vða; bÞ represents the whole space and is therefore
invariant under the group Oð2Þ and hence under any two-dimensional point group.
The same decompositions and reductions are applicable to lattices of layer groups with
the space of missing translations VðcÞ. Oblique lattices correspond to the triclinic/oblique
system and monoclinic/oblique system with the space of missing translations inclined and
orthogonal, respectively. Rectangular lattices correspond to the monoclinic/rectangular
and orthorhombic/rectangular and the space of missing translations is again inclined in
the first and orthogonal in the second case. Lattices of pavb and vapb are invariant only
under the action of point groups of triclinic, monoclinic and rectangular systems. The
lattice Vða; bÞ is invariant under all subgroups of the cylindrical group
D1;z ¼ 1z=mzmm.



reductions and decompositions are given in Tables 1 and 2,

respectively. Our consideration is, however, limited neither to

space nor to crystallographic groups. General classification of

Euclidean groups according to the character of their lattices

follows below. Both tables are complemented with symbols for

lattices of semicontinuous or continuous character in respec-

tive dimensions. Table 1 actually applies also to decomposi-

tions or reductions of lattices of layer groups.

Classification by the character of the translation subgroup:

We shall consider only those groups, the lattices TG of which

contain only a discrete component Td and/or continuous

component Vc. Such a lattice is of the general form

TG ¼ Tdða1; a2; . . . ; akd
Þ � Vcðakdþ1; akdþ2; . . . ; akdþkc

Þ

and the whole vector space splits into a direct sum:

VðnÞ ¼ VdðkdÞ � VcðkcÞ � VlðdÞ;

where VdðkdÞ ¼ hTdiR is the linear envelope of the discrete

part and VlðdÞ is the complement to the linear envelope hTGiR,

called here the space of missing translations. All three

subspaces VdðkdÞ, VcðkcÞ and VlðdÞ must certainly be

G-invariant. In general, we do not require that this comple-

ment be orthogonal to hTGiR but we require it to be

G-invariant.

Definition 3.3. We say that the lattice TG is:

(i) continuous, when kd ¼ 0, kc > 0;

(ii) semicontinuous, when kd > 0, kc > 0;
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84 Vojtěch Kopský � Hermann–Mauguin symbols Acta Cryst. (2006). A62, 77–92

Table 2
Reductions and decompositions of three-dimensional translation groups according to their Bravais classes.

Triclinic system
Any basis vectors a; b; c
All reductions inclined To

G1 To
G2

P Tða; bÞ � TðcÞ pab pc

Monoclinic system
Orthogonal reduction, unique axis c To

G1 To
G2

P Tða; bÞ � TðcÞ pab pc

A Tða; bÞ � TðcÞ½0 [ ðbþ cÞ=2� pa;b=2 pc=2

B Tða; bÞ � TðcÞ½0 [ ðaþ cÞ=2� pa=2;b pc=2

I Tða; bÞ � TðcÞ½0 [ ðaþ bþ cÞ=2� cab pc=2

Inclined reduction, unique axis a To
G1 To

G2

P Tða; bÞ � TðcÞ pab pc

C T½ðaþ bÞ=2; ða� bÞ=2� � TðcÞ cab pc

B Tða; bÞ � TðcÞ½0 [ ðaþ cÞ=2� pa=2;b pc=2

I Tða; bÞ � TðcÞ½0 [ ðaþ bþ cÞ=2� cab pc=2

Inclined reduction, unique axis b To
G1 To

G2

P Tða; bÞ � Tðc) pab p
C T½ðaþ bÞ=2; ða� bÞ=2� � TðcÞ cab p
A Tða; bÞ � TðcÞ½0 [ ðbþ cÞ=2� pa;b=2 pc=2

I Tða; bÞ � TðcÞ½0 [ ðaþ bþ cÞ=2� cab pc=2

Orthorhombic system
All reductions orthogonal To

G1 To
G2

P Tða; bÞ � TðcÞ pab pc

C T½ðaþ bÞ=2; ða� bÞ=2� [ TðcÞ cab pc

B Tða; bÞ � TðcÞ½0 [ ðaþ cÞ=2� pa=2;b pc=2

A Tða; bÞ � TðcÞ½0 [ ðbþ cÞ=2� pa;b=2 pc=2

F T½ðaþ bÞ=2; ða� bÞ=2� � TðcÞ½0 [ ðaþ cÞ=2� pa=2;b=2 pc=2

I Tða; bÞ � TðcÞ½0 [ ðaþ bþ cÞ=2� cab pc=2

Tetragonal system
All reductions orthogonal To

G1 To
G2

P Tða; bÞ [ TðcÞ pab pc

I Tða; bÞ � TðcÞ½0 [ ðaþ bþ cÞ=2� bppab pc=2

Hexagonal family
All reductions orthogonal
Single Z-decomposition (P) only in hexagonal system
Either Z-decomposition (P) or Z-reduction (R) in trigonal system.

To
G1 To

G2

P Tða; bÞ � TðcÞ pab pc

R1 (inverse setting) Tða; bÞ � TðcÞ½0 [ ð2aþ bþ cÞ=3 [ ðaþ 2bþ 2cÞ=3� bpp1=3 pc=3

R2 (reverse setting) Tða; bÞ � TðcÞ½0 [ ðaþ 2bþ cÞ=3 [ ð2aþ bþ 2cÞ=3� bpp1=3 pc=3

Meanings of symbols: pab ¼ Tða; bÞ, pa=2;b ¼ Tða=2; bÞ, pa;b=2 ¼ Tða; b=2Þ, pa=2;b=2 ¼ Tða=2; b=2Þ; cab ¼ TðaÞ � T½ðaþ bÞ=2� ¼ T½ðaþ bÞ=2; ða� bÞ=2� in the orthorhombic system;bppab ¼ TðaÞ � T½ðaþ bÞ=2� ¼ T½ðaþ bÞ=2; ða� bÞ=2� in the tetragonal system;bpp1=3 ¼ T½ð2aþ bÞ=3; ðaþ 2bÞ=3�, pc ¼ TðcÞ, pc=2 ¼ Tðc=2Þ, pc=3 ¼ Tðc=3Þ.
The reductions and decompositions in this table are given with respect to decomposition of the whole vector space into a direct product Vða; b; cÞ ¼ Vða; bÞ � VðcÞ. There exist also
semicontinuous and continuous lattices that decompose under the action of certain point groups. We denote them as follows: pabvc ¼ TGða; bÞ � VGðcÞ or vabpc ¼ VGða; bÞ � TGðcÞ and
Vða; b; cÞ.
The first two lattices are invariant under all specific orientations of all point groups with the exception of cubic and icosahedral groups as well as under the special or full orthogonal
groups SOð3Þ and Oð3Þ. Quite generally, they are invariant under all subgroups of the cylindrical group D1;z ¼ 1z=mzmm.
The translation group Vða; b; cÞ represents the whole vector space and is therefore invariant under any of the three-dimensional point groups.



(iii) discrete, when kd > 0, kc ¼ 0.

For up to three-dimensional lattices, we then have the

following lattice types:

n� d ¼ kt ¼ 1: p discrete, v continuous;

n� d ¼ kt ¼ 2: p, c discrete, v continuous, pv semicontin-

uous;

n� d ¼ kt ¼ 3: P, I, F, A � B � C, R discrete Bravais

lattices, V continuous, pv, cv, pv semicontinuous.

Although this distinction of Euclidean groups according to

the type of their lattices applies in arbitrary dimensions, up to

three dimensions we have restrictions. Thus, in two dimen-

sions, there are no frieze groups with a semicontinuous lattice,

in three dimensions, only the combination of one-dimensional

discrete and another one-dimensional continuous lattice is

allowed for layer groups with semicontinuous lattices. The

letters v, v and V have the meaning of vector spaces of

dimensions one, two, and three. We use script lower-case fonts

p and v for the discrete and continuous one-dimensional

lattice in accordance with ITE. We suggest the use of the

following names for groups with continuous and semicontin-

uous lattices:

point-like line, frieze and rod groups for groups with the

lattice v;

point-like plane and layer groups for groups with the lattice

v;

point-like space groups for groups with the lattice V;

frieze-like plane groups and rod-like layer groups for the

groups with the lattice pv.

layer-like space groups for groups with lattices pv or cv;

rod-like space groups for groups with the lattice pv.

These names express certain properties of the groups. For

example, in the case of a point-like space group VG, each

point of the space has the same symmetry G. In the case of

layer-like space groups, each plane with the orientation

defined by the discrete part p or c of the lattice has the

symmetry of the same layer group, while, in the case of rod-

like space groups, each line with the orientation defined by the

discrete part p of the lattice has the symmetry of the same rod

group.

4. Amendments to classical terminology

4.1. Space, subperiodic and site-point groups

Consideration of new types of groups of three-dimensional

space requires certain natural amendments to current termi-

nology. Our first proposal is to amend the concept of space and

subperiodic groups as follows.

The first amendment to standard terminology:

Definition 4.1. The group G ¼ fG;TG;P; uGðgÞg is called:

(i) a space group if TG spans the whole space VðnÞ;

(ii) a subperiodic group if TG spans a proper subspace

VtðktÞ; the number d ¼ n� kt is called the dimension de-

ficiency of the subperiodic group;

(iii) a site-point group if TG ¼ f0g, so that it contains only

the vector t ¼ 0; we say also that TG is trivial.

Up to four dimensions, we have the following, already

adopted, nomenclature:

dimension 1: n ¼ 1 d ¼ 0 line groups;

dimension 2: n ¼ 2, d ¼ 0 plane groups; d ¼ 1, kt ¼ 1 frieze

groups;

dimension 3: n ¼ 3, d ¼ 0 space groups; d ¼ 1, kt ¼ 2 layer

groups; d ¼ 2, kt ¼ 1 rod groups;

dimension 4: n ¼ 4, d ¼ 1, kt ¼ 3 magnetic space groups

(Shubnikov groups); d ¼ 2, kt ¼ 2 magnetic layer groups;

d ¼ 3, kt ¼ 1 magnetic rod groups.

Note that we do not require here the discreteness of the

lattice TG so that the concept of space groups is extended to

other than crystallographic groups. Below we also amend the

concept of crystallographic groups. The term space group in

non-traditional meaning is already in use for so-called quasi-

crystallographic space groups and it is an adequate and natural

terminology (Rokhsar et al., 1988).

4.2. Crystallographic groups

The second amendment to standard terminology:

Definition 4.2a. A point group G is called crystallographic if a

discrete G-invariant TG exists which spans the whole VðnÞ.

[More mathematically: G affords Z representation on VðnÞ

(Curtis & Reiner, 1966).]

Definition 4.2b. An Euclidean group G ¼ fG;TG;P; uGðgÞg is

called crystallographic if its point group G is crystallographic.

Justification of the changes to standard terminology.

Example: The point-like space group Vm�33m is the symmetry

of a crystal of point symmetry m�33m in the continuous

approximation. The group certainly deserves the name space

as well as crystallographic.

It is customary in the theory of phase transitions to handle

the equitranslational cases in continuous approximation and

in terms of point groups and tensor components. Even in this

approximation, it is more rigorous to replace the point groups

by point-like space groups and tensor components by tensor

fields constant throughout the crystal. This is particularly

evident in consideration of domain walls where the symmetry

of the wall should be described by some layer group; in a

rigorous use of the continuous approximation, we should use

the point-like layer group.

The groups with continuous and semicontinuous lattices

appear also as normalizers of space groups [cf. Koch & Fischer

(1987); see also more detailed consideration of translation

normalizer by Kopský (1993bc)]. Both amendments were

proposed at ECM-9 in Prague in 1998 (Kopský, 2000).
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5. Factorization of reducible three-dimensional space
groups to layer and rod groups

In the following, we shall say that an Euclidean group G is

reducible if its translation subgroup TG is reducible or

decomposable under the action of the point group G.

Reducibility (hence decomposability) of the point group G on

VðnÞ is necessary and sufficient for either of these cases to

appear. A quite general situation is considered by Kopský

(1986), reducibility of three-dimensional space groups by

Kopský (1988b, 1989a,b, 1993a) and Fuksa & Kopský (1993).

The detailed theory is based on the application of the concept

of subdirect products for reducible point groups and of

subdirect sums for translation subgroups (see Kopský, 1988a).

This concept actually also lies in the background of derivation

of magnetic, black and white, symmetry–antisymmetry, colour

groups and other generalizations. The fact that factorization of

reducible or decomposable Euclidean groups leads to

subperiodic groups is one of the most important consequences.

Below we analyse the case of reducible three-dimensional

space groups. In an analytical approach, we show that redu-

cibility implies the existence of a layer and a rod group as

factor groups of the space group. In a constructive approach,

we show how a reducible space group can be assigned to a pair

of layer and rod groups of the same reducible geometric class.

Analytic approach: Let G ¼ fG;TG;P; uGðgÞg be a reduc-

ible space group with decomposable action of G on

Tða; b; cÞ ¼ Tða; bÞ � TðcÞ, where Tða; bÞ, TðcÞ are G-invari-

ant. The system of non-primitive translations splits into its

components uG1ðgÞ 2 Vða; bÞ and uG2ðgÞ 2 VðcÞ, and uG1ðgÞ,

uG2ðgÞ satisfy Frobenius congruences mod Tða; bÞ and

mod TðcÞ, respectively. Hence, there exists a layer group L and

a rod group R:

L ¼ fG;Tða; bÞ;P; uG1ðgÞg; R ¼ fG;TðcÞ;P; uG2ðgÞg:

The translation subgroups Tða; bÞ, TðcÞ are normal in G and

the factor groups are isomorphic to this layer and rod group:

L � G=TðcÞ and R � G=Tða; bÞ:

This result is of particular importance in the representation

theory of space groups and in the theory of the lattices of their

subgroups.

Indeed, it follows that representations of the layer group L

and of the rod group R engender certain representations of

the space group G and that the lattices of subgroups of the

layer and rod groups are isomorphic with certain sublattices of

the space group (Kopský, detailed consideration will be

published).

Constructive approach: We take all layer and rod groups of

arithmetic classes ðG;Tða; bÞÞ and ðG;TðcÞÞ:

L
ð�Þ
ð�Þ ¼ fG;Tða; bÞ;P; u

ð�Þ
G1ðgÞ þ ’ðg; �Þg;

R
ð�Þ
ð�Þ ¼ fG;TðcÞ;P; u

ð�Þ
G2ðgÞ þ ’ðg; �Þg

and by their combination we get all space groups of the

arithmetic class ðG;Tða; b; cÞÞ:

G
ð�;�Þ
ð�þ �Þ ¼ fG;Tða; b; cÞ;P; u

ð�;�Þ
G ðgÞ þ ’ðg; �þ �Þg:

5.1. Schreier multiplication

It is therefore possible to introduce a formal multiplication

of the symbols of complementary subperiodic groups where

the result is a space group:

G
ð�;�Þ
ð�þ �Þ ¼ Lð�Þð�Þ � Rð�Þð�Þ;

which corresponds to

Tða; b; cÞ ¼ Tða; bÞ � TðcÞ; u
ð�;�Þ
G ðgÞ ¼ u

ð�Þ
G1ðgÞ þ u

ð�Þ
G2ðgÞ;

’ðg; �þ �Þ ¼ ’ðg; �Þ þ ’ðg; �Þ:

We name this law after Schreier (1926a,b), the initiator of the

theory of group extensions.

This result and Theorem 2 create the background for the

‘Unified system of Hermann–Mauguin symbols’ for space and

subperiodic groups.

Remark 4. If either of the components Tða; bÞ or TðcÞ is

replaced by continuous translation subgroup Vða; bÞ or VðcÞ,

then there exists only one respective system of non-primitive

translations which is trivial.

All three-dimensional point groups with the exception of

cubic groups are reducible and their action on lattices of

primitive Bravais type P is decomposable. Centred lattices are

generally only reducible and, although the factorization

theorem also holds for them, it has a slightly different form

which will be considered in detail in another paper. However,

the decomposition used above applies for the centring in the

ða; bÞ plane and the resulting layer groups have then a centred

lattice. This happens in cases of monoclinic and orthorhombic

lattices when C-centring of a space group implies c-centring of

layer groups, which are the results of factorization. Decom-

positions Tða; b; cÞ ¼ TðaÞ � Tðb; cÞ and Tða; b; cÞ ¼

TðbÞ � Tða; cÞ also lead to factorization and can be applied for

A- and B-centring.

The primitive lattices of layer groups in cases of triclinic,

monoclinic and orthorhombic groups are themselves decom-

posable. Corresponding factor groups are then the rod groups

of the same geometric class. Quite generally, if the lattice

of a space group G of arithmetic class ðG;TGÞ decomposes

into the direct sum TG ¼ Tða; b; cÞ ¼ TðaÞ � TðbÞ � TðcÞ,

then the systems of non-primitive translations (SNTs) of

this space group splits into a sum uGðgÞ ¼ u
ð�;�;�Þ
G ðgÞ ¼

u
ð�Þ
GaðgÞ þ u

ð�Þ
GbðgÞ þ u

ð�Þ
GcðgÞ, where u

ð�Þ
GaðgÞ 2 VðaÞ, u

ð�Þ
GbðgÞ 2 VðbÞ,

u
ð�Þ
GcðgÞ 2 VðcÞ, each of which satisfies Frobenius congruences

wð�Þa ðg; hÞ 2 TðaÞ, w
ð�Þ
b ðg; hÞ 2 TðbÞ, wð�Þc ðg; hÞ 2 TðcÞ so that

they define rod groups Rð�Þa , R
ð�Þ
b and Rð�Þc .

The shift function ’ðg; sÞ also splits into its components

’aðg; �Þ, ’bðg; �Þ, ’cðg; �Þ in spaces VðaÞ, VðbÞ, VðcÞ, where

s ¼ �þ �þ �, � 2 VðaÞ, � 2 VðbÞ, � 2 VðcÞ, and any space

group of the oriented arithmetic class ðG;TGÞ with fixed

parameters can be expressed as
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Table 3
Systems of non-primitive translations for rod, layer and space groups of geometric classes C4h � 4=m and C4v � 4mm.

(a) Geometric class C4h � 4=m

Arithmetic classes: 4=mp 4=mp 4=mP
Cohomology groups: C2 ¼ Cð�2Þ C2 ¼ Cð�1Þ C2

2 ¼ Cð�1; �2Þ

Cohomology element Arithmetic class Group type 4z 2z 4�1
z i

"2 4=mp p4=m 0 0 0 0
�2 Rod p42=m c=2 0 c=2 0

"1 4=mp p4=m 0 0 0 0
�1 Layer p4=n 0 0 0 ðaþ bÞ=2

"1 4=mP P4=m 0 0 0 0
�2 Space P42=m c=2 0 c=2 0
�1 P4=n 0 0 0 ðaþ bÞ=2
�1�2 P42=n c=2 0 c=2 ðaþ bÞ=2

�44z mz
�44
�1

z

0 0 0
c=2 0 c=2 Correlation with space groups according to ITA
0 0 0 Origin choice

ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2 1 2
0 0 0 C1

4h 0 –
c=2 0 c=2 C2

4h 0 –
ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2 C3

4h a=2 ðaþ bÞ=4
ðaþ bþ cÞ=2 ðaþ bÞ=2 ðaþ bþ cÞ=2 C4

4h a=2þ c=4 ðaþ 3bÞ=4

(b) Geometric class C4v � 4mm

Arithmetic classes: 4mmp 4mmp 4mmP
Cohomology groups: C2

2 ¼ Cð�2; �2Þ C2 ¼ Cð�1Þ C3
2 ¼ Cð�1; �2; �2Þ

Cohomology element Arithmetic class Group type 4z 2z 4�1
z

"2 4mmp p4mm 0 0 0
�2 Rod p42cm c=2 0 c=2
�2 p42mc c=2 0 c=2
�2�2 p4cc 0 0 0

"1 4mmp p4mm 0 0 0
�1 Layer p4bm 0 0 0

" 4mmP P4mm 0 0 0
�1 Space P4bm 0 0 0
�2 P42cm c=2 0 c=2
�1�2 P42nm c=2 0 c=2
�2�2 P4cc 0 0 0
�1�2�2 P4nc 0 0 0
�2 P42mc c=2 0 c=2
�1�2 P42bc c=2 0 c=2

mx mxy my mx�yy

0 0 0 0
c=2 0 c=2 0
0 c=2 0 c=2
c=2 c=2 c=2 c=2 Correlation with space groups according to ITA
0 0 0 0 One origin choice

ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2
0 0 0 0 C1

4v 0
ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2 ðaþ bÞ=2 C2

4v 0
c=2 0 c=2 0 C3

4v 0
ðaþ bþ cÞ=2 ðaþ bÞ=2 ðaþ bþ cÞ=2 ðaþ bÞ=2 C4

4v a=2
c=2 c=2 c=2 c=2 C5

4v 0
ðaþ bþ cÞ=2 ðaþ bþ cÞ=2 ðaþ bþ cÞ=2 ðaþ bþ cÞ=2 C6

4v 0
0 c=2 0 c=2 C7

4v 0
ðaþ bÞ=2 ðaþ bþ cÞ=2 ðaþ bÞ=2 ðaþ bþ cÞ=2 C8

4v 0



G
ð�;�;�Þ
ðsÞ ¼ Rð�Þa ð�Þ � R

ð�Þ
b ð�Þ � R

ð�Þ
c ð�Þ:

There also exist layer groups

L
ð�;�Þ
ab ð�þ �Þ ¼ R

ð�Þ
a ð�Þ � R

ð�Þ
b ð�Þ;

L
ð�;�Þ
bc ð�þ �Þ ¼ R

ð�Þ
b ð�Þ � R

ð�Þ
c ð�Þ;

L
ð�;�Þ
ca ð� þ �Þ ¼ R

ð�Þ
c ð�Þ � R

ð�Þ
a ð�Þ

and the space groups can also be expressed as

G
ð�;�;�Þ
ðsÞ ¼ L

ð�;�Þ
ab ð�þ �Þ � R

ð�Þ
c ð�Þ

¼ L
ð�;�Þ
bc ð�þ �Þ � R

ð�Þ
a ð�Þ

¼ L
ð�;�Þ
ca ð� þ �Þ � R

ð�Þ
b ð�Þ:

There are three ways to illustrate the relationship between

decomposable space groups and respective layer and rod

groups (decomposable plane and frieze groups or decom-

posable layer and rod groups).

(i) By tables of systems of non-primitive translations; two

examples are given in Table 3.

(ii) By tables of Hermann–Mauguin symbols; here we can

observe either how the symbol of the space group splits into a

pair of symbols for layer and rod group or how these two

combine into the symbol of the space group (frieze groups into

plane groups or rod groups into layer groups). This will be

illustrated in x7.

(iii) By comparison of group diagrams.

SNTs for rod, layer and space groups of geometric classes

C4h � 4=m and C4v � 4mm are given in Table 3. The space

groups in Tables 3(a) and 3(b) belong to arithmetic classes

with primitive lattice P, i.e. to 4=mP and 4mmP, where the

lattice decomposes into the direct sum P ¼ p � p and the rod

groups therefore belong to arithmetic classes 4=mp and 4mmp
and the layer groups to arithmetic classes 4=mp and 4mmp.

For rod and layer groups, the SNTs correspond to standards

given in ITE. For space groups they are chosen as the sums of

SNTs of corresponding rod and layer groups.

From diagrams of space groups in ITA, we can deduce the

SNTs that correspond to each diagram. However, the resulting

SNTs do not always coincide with those we obtain from

combination of SNTs of respective rod and layer groups. In

the last column of Tables 3(a) and 3(b), we show the shifts that

correspond to the different choices.

It is important to realize that SNTs do not always corre-

spond to space- (or generally Euclidean) group types. Indeed,

the SNT uniquely defines the diagram of the group. The label

of the SNT (� etc.) defines the diagram up to its shift in space.

Hence, in the case of orthorhombic groups, where different

diagrams correspond to different settings (orientation of the

group with reference to crystallographic basis), there are

several different diagrams to one space-group type. Each

diagram corresponds to a certain label of SNT as well as to a

quite specific Hermann–Mauguin symbol.

We know of only one source where SNTs are used. This is

the book on crystallographic groups of four-dimensional space

by Brown et al. (1978). Not all SNTs are presented in this

book; in tables one can observe that the order of the co-

homology group is sometimes different from that of the space-

group types. This is exactly the case of orthorhombic groups

where the number of non-equivalent SNTs and hence the

number of distinct diagrams for arithmetic class mmmP is 64

while the number of space-group types is 16.

The correspondence between SNTs and diagrams or

Hermann–Mauguin symbols is incomplete in ITA in the case

of space-group type T6
h for which Hermann–Mauguin symbol

Pa�33 is used. If we rotate the diagram by 90	, we find that it is

impossible to make the resulting picture coincide with the

original. In crystallographic language, this means that this

group has another setting and it should be indicated by the

symbol Pb�33 on the side of the diagrams. In the language of

SNTs, this means that no shift function exists which will

change the SNT for the symbol Pa�33 to the SNT for the symbol

Pb�33. The SNT for this group will be missing and the SNTs for

groups T1
h � Pm�33, T6

h � Pa�33 and T2
h � Pn�33 do not constitute a

group.

Comment: The author must say with regret that no discus-

sion with crystallographers helped him to understand what

exact meaning they assign to Hermann–Mauguin symbols. It

would be a waste of ingenious symbols to interpret them as

symbols of space-group types – Schoenflies symbols are quite

sufficient for that purpose.

6. Euclidean groups of reducible geometric classes

In this and the next section, we shall consider Euclidean

groups of reducible geometric classes with reference to a

certain reduction of the space with which decomposition of

their lattices is associated. To each such case, we assign a

certain chart which shows how these groups are related. These

charts have a common structure as described below.

Plane groups: We assume that the space Vða; bÞ splits under

the action of the point group G into a direct sum VðaÞ � VðbÞ.

The following lattices define the arithmetic classes: TðaÞ � pa,

VðaÞ � va, TðbÞ � pb, VðbÞ � vb, Tða; bÞ ¼ TðaÞ � TðbÞ � p,

VðaÞ � TðbÞ � vapb, TðaÞ � VðbÞ � pavb and Vða; bÞ � v.

Groups of the geometric class are arranged in blocks as shown

in Table 4 with names of groups in each block.

Layer groups: The lattices are defined in the same way as for

the plane groups. Instead of frieze (frieze-like) groups there

are rod (and rod-like) groups and instead of plane groups

there are layer groups. See Table 5.

Space groups: We assume that the space Vða; b; cÞ splits into

a direct sum Vða; bÞ � VðcÞ. The following lattices define the

arithmetic classes: Tða; bÞ � pab, Vða; bÞ � vab, TðcÞ � pc,

VðcÞ � vc, Tða; b; cÞ ¼ Tða; bÞ � TðcÞ � P, Vða; bÞ � TðcÞ �

vabpc, Tða; bÞ � VðcÞ � pabvc and Vða; b; cÞ � V. In cases of

monoclinic and orthorhombic groups, there appears a

subchart corresponding to arithmetic class GC of space groups

with a C-centred lattice. In this case, the following lattices also

appear:
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T½ðaþ bÞ=2; ða� bÞ=2� � cab;

T½ðaþ bÞ=2; ða� bÞ=2� � TðcÞ � C;

T½ðaþ bÞ=2; ða� bÞ=2� � VðcÞ � cabpc:

In actual charts, we refer to the decomposition and leave out

the subscripts indicating subspaces.

All three charts (Tables 4, 5, 6) have the following common

features. (i) In the left upper corner is given the arithmetic

class of groups which appear in the central block. (ii) Each

block contains groups of the same arithmetic class; the lattice

and name of the kind of groups is given. (iii) The first column

and the first row contain first the groups with discrete lattice,

the last group in the row and column is the point-like group.

(iv) On intersection of rows and columns, we find those groups

that are obtained from groups heading the rows and columns.

The lattice of these groups is the direct sum of the lattices and

the SNTs are the sums of SNTs of groups heading the row and

column. As a result, the groups with semicontinuous lattices

are arranged in the last row and column and the point-like

group of the geometric class stands in the right lower corner.

(v) A space shift of the group on the intersection is the sum of

the space shifts of the groups heading the row and column.

7. Examples of charts of Euclidean groups with respect
to the same decomposition of the space under the
action of a reducible point group

The first three charts correspond to the point group C2v. In the

first chart (Table 7), we consider plane groups of this class as

combinations of frieze groups. In the second chart (Table 8),

we consider layer groups as combinations of rod groups. In

both tables, we assume that the translation subgroups are

generated by vectors a and b. Layer groups in Table 8 are

usually called the ‘trivial’ layer groups and sometimes identi-

fied with plane groups because they do not contain an

operation which exchanges the sides of the plane while the

‘true’ layer groups which do change the sides of the plane were

called ‘groups of two-sided plane’ by Holser (1958a,b). This

name is rather inappropriate because all planes in three-

dimensional space have two sides. We interpret the plane

groups as groups acting on two-dimensional space, which is to

say a ‘plane in itself’, which has no sides, in contrast to planes

in three-dimensional space, which are two-sided anyway and,

in addition, they have a certain location in a direction

complementary to the plane.

This is the reason why we preferred in ITE the symbols of

layer groups by Bohm & Dornberger-Schiff (1966) to those

used by Wood (1964). The latter were derived by the method

of halving subgroups from plane groups in which, unfortu-

nately, if we interpret them as groups in three-dimensional

space, the first position of the symbol for oblique and

rectangular systems corresponds to the direction perpen-

dicular to the plane, while in corresponding symbols of

monoclinic and orthorhombic systems this direction defines

the last position of the Hermann–Mauguin symbol. Accord-

ingly, the geometric class of plane groups is denoted by

Hermann–Mauguin symbol 2mm while the geometric class of

(though trivial) layer groups is mm2. There exist, of course,

also geometric classes of the type C2v of other orientations to

which there correspond Hermann–Mauguin symbols 2mm and

m2m.

The chart in Table 9 shows how the space groups of the

same geometric class C2v �mm2 combine from layer and rod

groups. We can see that the correspondence of symbols will

never be achieved if we adopted Wood’s symbols for layer

groups. In this chart, we also show how space groups with a

C-centred lattice combine from layer groups with a c-centred

lattice with rod groups. Layer groups from Table 8 are used

here and the rod groups are of different types from those in

Table 8 because the direction of the twofold axis coincides

now with the translation space while in the previous case it is

perpendicular to it.

In the chart in Table 10, we show how the groups of

tetragonal classes 422, 4mm, �442m, �44m2 and 4=mmm combine
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Table 4
Plane groups: primitive type/decomposition.

Arithmetic
class

Frieze groups with
discrete lattice

Frieze groups with
continuous lattice

pb vb

Frieze groups with
discrete lattice

Reducible plane groups
with primitive lattice

Frieze-like plane groups
with semicontinuous
lattice

pa p pavb

Frieze group with
continuous lattice

Frieze-like plane groups
with semicontinuous
lattice

Point-like plane groups
with continuous
lattice

va vapb v

Table 5
Layer groups: primitive type/decomposition.

Arithmetic
class

Rod groups with
discrete lattice

Rod groups with
continuous lattice

pb vb

Rod groups with
discrete lattice

Reducible layer groups
with primitive lattice

Rod-like layer groups
with semicontinuous
lattice

pa p pavb

Rod group with
continuous lattice

Rod-like layer groups
with semicontinuous
lattice

Point-like layer groups
with continuous
lattice

va vapb v

Table 6
Space groups: primitive type and decomposable cases.

Arithmetic
class

Rod groups with
discrete lattice

Rod groups with
continuous lattice

pc vc

Layer groups with
discrete primitive
lattice

Reducible space groups
with primitive lattice

Space groups with
semicontinuous lattice

pab P pabvc

Layer groups with
discrete centred
lattice

Reducible space groups
with base-centred
lattice in C setting

Layer-like space groups
with semicontinuous
lattice

cab C cabvc

Layer group with
continuous lattice

Rod-like space groups
with semicontinuous
lattice

Point-like space groups
with continuous
lattice

vab vabpc V



from corresponding layer and rod groups. Tables 9 and 10

illustrate simple rules on which the unification is based.

Lattices on intersections are direct sums of lattices of layer

and rod groups. On each position of a Hermann–Mauguin

symbol, we combine the symbol in the rod group with that in

the layer group according to known rules. Thus the screw axes

41, 42, 43 in rod groups combine with ordinary axis 4 in layer

groups (where screws in this direction cannot exist) into 41, 42,

43 screw axes in the space group. Screw axes 21 of layer groups

in the second or third position combine with ordinary axes 2 of

rod groups (where screw axes in these directions cannot exist)

into 21 screw axes of space groups. Only glide planes with

symbol c are allowed in symbols of rod groups, while only a, b

and n are allowed in symbols of layer groups. They combine

among themselves and with the symbols m of ordinary planes

as follows: ðm;mÞ � m, ðm; cÞ � c, ða;mÞ � a, ða; cÞ � n,

ðb;mÞ � b, ðb; cÞ � n, ðn;mÞ � n, while other combinations

do not exist.

The Hermann–Mauguin symbols of the ordinary space

groups are arranged in the central part of each table. The

superscripts on the left are the numerical labels of the

respective Schoenflies symbols of the space-group type. The

first row contains symbols of rod groups of the arithmetic class

Gp which correspond to systems of non-primitive translations

uð�Þ; the first symbol pG is the symbol of the symmorphic rod

group, the last symbol vG is the symbol of the point-like rod

group – it is uð�Þ � 0 in both cases. The first column contains

symbols of layer groups of the arithmetic class Gp which

correspond to systems of non-primitive translations uð�Þ; the

first symbol pG is the symbol of the symmorphic layer group,

the last symbol vG is the symbol of the point-like layer group –

it is uð�Þ � 0 in both cases.

The space groups on the intersections of rows and columns

correspond to systems of non-primitive translations

u
ð�;�Þ
G ¼ u

ð�Þ
G þ u

ð�Þ
G ; the group PG in the left upper corner of

the central table is the symmorphic space group and the group

VG in the right lower corner is the point-like space group – it

is u
ð�;�Þ
G � 0 in both cases.

Groups in the last column with the lattice pv are the layer-

like space groups, whose system of non-primitive translations

has trivial components in the direction of the c axis and

components corresponding to the layer group heading the

row. The name layer-like space groups is justified by the fact

that each ab plane has the symmetry of this layer group.

Groups in the last row with the lattice vp are the rod-like

space groups, whose system of non-primitive translations has

trivial components in the direction of the ab plane and

components corresponding to the rod group heading the

column. The name rod-like space groups is justified by the fact

that each c line has the symmetry of this rod group. The group

VG in the right lower corner is the point-like space group. This

name is justified by the fact that each point P has the

symmetry GP.
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Table 7
Plane groups of the geometric class C2v � 2mm.

2mmp pb2mm pb2gm vb2mm
pa2mm p2mm p2gm pavb2mm
pa2mg p2mg p2gg pavb2mg
va2mm vapb2mm vapb2gm v2mm

Table 8
Layer groups of the geometric class C2v �mm2.

mm2p pbmm2 pbbm2 vbmm2
pamm2 pmm2 pbm2 pavbmm2
pama2 pma2 pba2 pavbma2
vamm2 vapbmm2 vapbbm2 vmm2

Table 9
Space groups of the geometric class C2v �mm2; arithmetic classes mm2P
and mm2C.

mm2P pmm2 pmc21 pcm21 pcc2 vmm2
pmm2 1Pmm2 2Pmc21

2Pcm21
3Pcc2 pvmm2

pma2 4Pma2 7Pmn21
5Pca21

6Pcn2 pvma2
pbm2 4Pbm2 5Pbc21

7Pnm21
6Pnc2 pvbm2

pba2 8Pba2 9Pbn21
9Pna21

10Pnn2 pvba2
mm2C
cmm2 11Cmm2 12Cmc21

12Ccm21
13Ccc2 cvmm2

vmm2 vpmm2 vpmc21 vpcm21 vpcc2 Vmm2

Table 10
Correlation of Hermann–Mauguin symbols for space groups with those of
layer and rod groups of tetragonal decomposable point groups.

Geometric class 422

422P p422 p4122 p4222 p4322 v422
p422 1P422 3P4122 5P4222 7P4322 pv422
p4212 2P4212 4P41212 6P42212 8P43212 pv4212
v422 vp422 vp4122 vp4222 vp4322 V422

Geometric class 4mm

4mmP p4mm p42cm p4cc p42mc v4mm
p4mm 1P4mm 3P42cm 5P4cc 7P42mc pv4mm
p4bm 2P4bm 4P42nm 6P4nc 8P42bc pv4bm
v4mm vp4mm vp42cm vp4cc vp42mc V4mm

Geometric class �442m

�442mP p �442m p �442c v �442m
p�442m 1P�442m 2P�442c pv �442m
p�4421m 3P�4421m 4P�4421c pv �4421m
v�442m vp �442m vp �442c V �442m

Geometric class �44m2

�44m2P p �44m2 p �44c2 v �44m2
p�44m2 5P�44m2 6P�44c2 pv �44m2
p�44b2 7P�44b2 8P�44n2 pv �44b2
v�44m2 vp �44m2 vp �44c2 V �44m2

Geometric class 4=mmmP

4=mmmP p4=mmm p4=mcc p42=mmc p42=mcm v4=mmm
p4=mmm 1P4=mmm 2P4=mcc 9P42=mmc 10P42=mcm pv4=mmm
p4=nbm 3P4=nbm 4P4=nnc 11P42=nbc 12P42=nnm pv4=nbm
p4=mbm 5P4=mbm 6P4=mnc 13P42=mbc 14P42=mnm pv4=mbm
p4=nmm 7P4=nmm 8P4=ncc 15P42=nmc 16P42=ncm pv4=nmm
v4=mmm vp4=mmm vp4=mcc vp42=mmc vp42=mcm V4=mmm



The tables allow the constructive interpretation in which

rod and layer groups combine into space groups as well as the

analytical interpretation in which the space groups split into

respective rod and layer groups which are the factor groups.

Let us now recall that the choice of the system of non-

primitive translations uGðgÞ þ ’ðg; sÞ instead of uGðgÞ corre-

sponds to a group GðsÞ, which is the group G shifted in space by

s. In our choice of systems of non-primitive translations for

rod groups, we assume that the line which is left invariant

passes through the origin, in the case of layer groups we

assume that the plane which is left invariant passes through

the origin. This means that chosen systems of non-primitive

translations for rod groups do not contain components in

Vða; bÞ, for layer groups they do not contain components in

VðcÞ. Such components may exist but, if they do, they are

equivalent to shift functions so that respective rod and layer

groups leave invariant lines or planes which do not pass

through the origin.

We assume in the proposed system of unified symbols that

the systems of non-primitive translations for rod and layer

groups are chosen so that they form an additive group; then

the systems of non-primitive translations of the space groups

form also an additive group – a direct sum of the two groups.

Let u
ð�Þ
G ðgÞ 2 Vða; bÞ and u

ð�Þ
G ðgÞ 2 VðcÞ be the systems of

non-primitive translations for chosen standards of a layer

group Lð�Þ and rod group Rð�Þ, so that the system of non-

primitive translations u
ð�Þ
G ðgÞ þ u

ð�Þ
G ðgÞ defines the standard

space group G
ð�;�Þ. The addition of shift functions

’ðg; s1Þ 2 Vða; bÞ, ’ðg; s2Þ 2 VðcÞ changes the layer group into

L
ð�Þ
ðs1Þ, the rod group into Rð�Þðs2Þ and the space group into

G
ð�;�Þ
ðs1 þ s2Þ. Hence, in the charts in Tables 9 and 10, an

addition of a shift to a rod group leads to an addition of the

same shift in all space groups of the column, headed by this

rod group. Analogously, an addition of a shift to a layer group

leads to an addition of the same shift to all space groups of the

row, headed by this layer group.

Last but not least. A long time ago, it was observed by

K. Lonsdale and commented on by Cochran (1952) that

certain space groups have the same diagrams as certain layer

groups. These are the groups with a trivial system of non-

primitive translations in the direction of VðcÞ, they appear in

the first column of the space groups in our charts and their

Hermann–Mauguin symbols differ from those of layer groups

only by the lattice symbol P instead of p. Quite analogously,

we can observe diagrams of rod groups in diagrams of certain

space groups if we encircle the origin (in some cases they are

located at another point; in our interpretation of Hermann–

Mauguin symbols they will always be related to the origin).

These are the space groups with a trivial system of non-

primitive translations in the direction of Vða; bÞ, they appear

in the first row of the space groups in our charts and their

Hermann–Mauguin symbols differ from those of rod groups

only by the lattice symbol P instead of p. In a geometrical

interpretation, there exists a plane which displays the full layer

symmetry in the first case, a line which displays the full rod

symmetry in the second case. This is in analogy to symmorphic

space groups which display the full point symmetry at a certain

point, usually the origin (in our interpretation it will always be

the origin).

We suggested that reducible space groups with decom-

posable lattices should be classified into layer classes (the

rows) and rod classes (the columns) and to say that the space

groups of the first column are symmorphic representatives of

layer classes, the space groups of the first row are symmorphic

representatives of rod classes (Kopský, 1989b, 1993a).

Projections of space groups onto layer and rod groups can

also be deduced from the diagrams. If we omit all fractions

indicating the height of symmetry elements, replace screw axes

perpendicular to the plane of the diagram by ordinary axes,

dotted lines by full lines (c! m) and dash-dotted by dashed

lines (n! a or b), we obtain the diagram of the corre-

sponding layer group. Analogously, if we move all symmetry

elements to the origin leaving their heights, replace the 21 axes

in the plane by ordinary twofold axes, dashed lines by full ones

(a or b! m), dash-dotted by dotted lines (n! c) and planes

parallel to diagrams by planes, leaving their heights, we obtain

the diagram of corresponding rod group.

8. Conclusions

There are three new points in the proposed system. (i) To take

the location of groups into account in their Hermann–

Mauguin symbols. (ii) To correlate Hermann–Mauguin

symbols of reducible space groups with those of subperiodic

groups. (iii) To extend the standards to groups with semi-

continuous and continuous lattices. All three points are

justified by applications in theories of material physics. To

complete the unified system of Hermann–Mauguin symbols,

we have to consider cases of reducible/indecomposable

lattices of space (layer) groups where factorization has certain

specific features. We shall also extend the system to non-

crystallographic and magnetic groups.

APPENDIX A

Inasmuch as Lemma 1 and the composition law of isometries

in the form of Seitz symbols constitute the background of the

theory of Euclidean groups, it is appropriate to prove it.

Proof: Let � : EðnÞ�!EðnÞ be an isometry of EðnÞ and

P 2 EðnÞ its arbitrary point. Any point X 2 EðnÞ is expressed

as X ¼ Pþ x, x 2 VðnÞ. The isometry � sends the chosen

point P to P0 ¼ �P and any other point X to X 0 ¼ �X. This

point is expressed as X 0 ¼ P0 þ x0 with reference to the point

P0. According to the definition of isometries, the distances

X � P ¼ jxj and X 0 � P0 ¼ jx0j must be equal and hence

x0 ¼ gx, where g 2 OðnÞ. Hence X 0 ¼ �X ¼ P0 þ gx ¼

Pþ ðP0 � PÞ þ gx. Finally, we obtain

�X ¼ Pþ gxþ t;

where t ¼ P0 � P.

If t ¼ 0, operation � is evidently the rotation of EðnÞ about

P which we denote by fgj0gP, while t ¼ P0 � P is a shift of the

space EðnÞ by t. We combine both operations into one in the
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Seitz symbol � ¼ fgjtgP, so that fgjtgPX ¼ Pþ gxþ t.

Applying successively fgjtggP and fhjthgP to an arbitrary point

X , we obtain

fgjtggPfhjthgPX ¼ fgjtggPðPþ hxþ thÞ ¼ Pþ ghxþ gth þ tg

from where the multiplication law of Seitz symbols follows.
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